H₂O和 HLi 分子的双光子激发

朱正和 万明杰 唐永建 蒙大桥

(四川大学原子分子物理所,四川 成都 610065)

摘要 用全相对论量子力学计算 H₂O和 HLi的双光子偶极激发。为对比起见,同时用非相对论的对称匹配团族-组态相互作用法(SAC-CI)计算其单光子激发。对于无对称中心的 H₂O和 HLi,符合相应群的对称选择原则。双 光子跃迁几率一般比单光子跃迁的小 3~5个数量级。在计算双光子偶极激发时,应采用同时包含了空间的对称 性和时间反转对称性的全相对论。

关键词 原子与分子物理学;双光子激发;单光子激发;分子 H2O和 HLi

中图分类号 O561.3 文献标识码 A doi: 10.3788/AOS201232.0130003

Two-Photon Excitation for H₂O and HLi

Zhu Zhenghe Wan Mingjie Tang Yongjian Meng Daqiao

(Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, China)

Abstract The two-photon excitation is studied by the full relativistic theory of H_2O and HLi. The single-photon excitation of H_2O and HLi molecules is also studied using symmetry adapted cluster/configuration interaction (SAC-CI) method for comparison. The excitation probability of two-photon excitation is $3\sim5$ orders of magnitude less than that of single-photon excitation. It is better to use the full relativistic theory, which involves both space and time symmetry, for the calculation of two-photon excitation.

Key words atomic and molecular physics; two-photon excitation; single-photon excitation; H_2O and HLi molecules OCIS codes 020.4180; 350.5720; 300.6410; 300.6420

1 引 言

当辐射与物质相互作用时,一般只考虑单光子 和电子的作用。多光子的理论研究实际上很早。双 光子过程在 1931 年已由 Maria Goppert-Mayer 发 现,由于光弱,没有引起重视。在激光发展后,当光 强达到 10¹⁴~10¹⁵ W/cm² 时,必须考虑与多光子的 作用,多光子过程这才引起人们的重视。三光子过 程在 1964 年已经被观察到。

经多光子激发后的高能电子可能会离开原子而 电离,此现象称为多光子电离。这种附有高能量电 子的原子也可重新回到原子基态,而放出一高能量 的光子,其光子的频率为原激光频率的数倍,由此得 到高频谐波。

1990年开始了双光子光谱研究[1],近年来对氦

的双光子双电离的研究亦很活跃^[2]。Underwood 等^[3]用 266 nm 的双光子吸收,使 H₂O分子从 \tilde{X} 态跃 适到 \tilde{B} 态,加入其不可约表示,则应为 $\tilde{X}^1A_1 \rightarrow \tilde{B}^1A_1$, 应用的双光子能量为 7.5186 eV,实验的激发能为 8. 7868 eV。应用 CCSD-EOM 三光子方法计算了卟啉-蒽大体系的三光子吸收截面^[4]。实验测定过类 He 锡双光子衰变光谱^[5]。

本文用全相对论的量子力学理论(DHF)计算 H₂O和HLi分子的双光子偶极激发,同时,由非相 对论的对称匹配团族-组态相互作用法(SAC-CI)计 算它们的单光子偶极激发,并加以对比。已有研究 一般用非相对论的量子力学理论研究。涉及光子 时,要用相对论的量子力学理论,而且更要用同时包 含了空间的对称性和时间反转对称性的全相对论。

收稿日期: 2011-06-28; 收到修改稿日期: 2011-08-29

基金项目:中国工程物理研究院联合基金(H09060)资助课题。

作者简介:朱正和(1932—),男,教授,博士生导师,主要从事原子分子理论方面的研究。E-mail: zhuxm@scu.edu.cn

2 双光子激发过程

由含时微扰理论的二级、三级近似等即可得到 双光子、三光子过程等^[6],即是说含时多级微扰理论 不仅是一种数学方法,更具有物理意义。设哈密顿 算符为

$$H = H_0 + H', \qquad (1)$$

式中 H' 为加在 H_0 上的微扰。按经典电磁理论,又可只考虑电场,则微扰 H' 的x 分量表示为

$$H' = \mu_x E_x = \mu_x E_x^0 [\exp(i\omega t) + \exp(-i\omega t)].$$
(2)

将(1)式代入含时的薛定谔方程,得到

$$\frac{\mathrm{d}C_n^{(0)}}{\mathrm{d}t} = 0; \quad \mathrm{i}\hbar \; \frac{\mathrm{d}C_n^{(1)}}{\mathrm{d}x} = \sum_m C_m^{(0)} \langle \Psi_n^0 | H' | \Psi_m^0 \rangle, \mathrm{i}\hbar;$$

$$: t \; \frac{\mathrm{d}C_n^{(2)}}{\mathrm{d}x} = \sum_m C_m^{(1)} \langle \Psi_n^0 | H' | \Psi_m^0 \rangle, \mathrm{i}\hbar;$$

 $i\hbar \frac{\mathrm{d} \mathbf{C}_n}{\mathrm{d} t} = \sum_m C_m^{(1)} \langle \boldsymbol{\Psi}_n^0 | H' | \boldsymbol{\Psi}_m^0 \rangle, \cdots$ (3)

积分后可得到单光子和双光子跃迁几率:

$$W_{k \to n}^{(1)} = \frac{|C_n^{(1)}|^2}{t} = \frac{2\pi}{\hbar} |H'_{nk}|^2 \delta(E_n - E_k), \quad (4)$$

$$W_{k \to n}^{(2)} = \frac{2\pi}{\hbar} \left| \sum_{m} \frac{H'_{mn} H'_{mk}}{\hbar \omega_{mk}} \right|^2 \delta(E_n - E_k), \quad (5)$$

式中 $\delta(E_n - E_k)$ 满足共振关系。

在(3) 式中零级近似系数,即零级近似表象为 常数,同时列出一级和二级近似系数。(4)式为单光 子吸收几率,(5)式为双光子吸收几率,两个等同光 子的吸收是(5)式的特例。

关于宇称原则,结合一级近似系数 C⁽¹⁾ 可知, 对偶极跃迁,单光子跃迁发生在奇偶相异的两个状态之间,因为电偶极矩是奇向量。再考虑二级近似 系数 C⁽²⁾ 和其一级近似系数 C⁽¹⁾,可知对电偶极跃 迁,双光子跃迁发生在奇偶相同的两个状态之间。 对于有对称中心的系统,要遵守宇称原则。

关于选择原则,无论是单光子跃迁还是双光子 跃迁都遵守相同的群的对称性。后文会用到 C_{2v}的 对称性。

跃迁的几率是讨论双光子过程的重要问题^[7]。 由(4)式可知,单光子吸收几率与跃迁矩的平方成比 例,即与电场向量的平方成比例,而电场向量的平方 与光的强度成比例。所以单光子吸收几率与光的强 度成比例。而由(5)式可知,双光子吸收几率与光的强 度成比例。而由(5)式可知,双光子吸收几率与光的强 时都很大,吸收几率才很大,一般不可能。所以,双 光子吸收几率比单光子吸收几率小几个数量级。然 而,双光子吸收几率却与光强度的平方成一定比例 关系,在低光强度时,双光子吸收几率很小;但是, 在光强度增加时,双光子吸收几率比单光子吸收几 率增加得快。所以在高强激光系统中,要重视双光 子过程。

本文应用全相对论的量子力学理论^[8~10]研究 双光子激发。所谓全相对论的量子力学理论,即是 在四分量的相对论中,引入时间反转算符 Å。因 此,它既满足 Lorentz covariance 协变,同时具有空 间和时间反转对称性的理论。因为 Å 是反酉算符, 这样同时出现酉算符和反酉算符,这时不可能出现 两个算符之积由两个相应的酉矩阵的积来表示,即 得不到群的不可约酉表示;但是,仍然可构成一个矩 阵的集合,它称为共表示(corepresentation),可以证 明,仍然可能蜕变为不可约表示。同时包含了空间对 称性和时间反转对称性的群,称为全对称群;而基于 全对称群的相对论,称为全相对论。时间反转算符 Å 早在 1996 年即引入原子分子反应静力学^[11]。

应用全相对论的量子力学理论的最新版程序 (DIRAC10)^[12],计算了分子 H₂O 和 HLi 的双光子 偶极激发,同时与用非相对论的量子力学理论方 法——SAC-CI 法^[13]所计算的单光子偶极激发相 比较。

3 分子 H₂O 的双光子激发

可以证明 C_{2v}群的电偶极 E₁,电四极 E₂ 和电八 极 E₃ 跃迁的选择定则^[14],在表 1 中列出电偶极选 择定则和其对应电偶极跃迁矩分量。只有 A₁ 和 A₂ 之间,B₁ 和 B₂ 之间不能发生电偶极跃迁。表 2 给出 了 H₂O 的单光子和双光子偶极激发几率。

H₂O分子全相对论量子力学的双光子偶极激发的计算,基集合为 cc-pVDZ,结果如表 3 所示。

在对比单光子激发和双光子激发时,讨论跃迁 几率是重要的。从 *i* 态到 *j* 态激发吸收振子强度为

$$f_{ij} = \frac{E_j - E_i}{3(2J+1)}S,$$
 (6)

表 1 C2v的电偶极跃迁 E1 和其跃迁矩分量

Table 1 Dipole transition $E_{\rm 1}$ and its components for $C_{\rm 2V}$

Transitions	Components	Transitions	Components
$A_1 \leftrightarrows A_1$	$E_1[z]$	$A_2 \leftrightarrows B_1$	$E_1[y]$
$A_1 \leftrightarrows B_1$	$E_1[x]$	$A_2 \leftrightarrows B_2$	$E_1[x]$
$A_1 \leftrightarrows B_2$	$E_1[y]$	$B_1 \leftrightarrows B_1$	$E_1[z]$
$A_2 \stackrel{\leftarrow}{\Longrightarrow} A_2$	$E_1[z]$	$B_2 \leftrightarrows B_2$	$E_1[z]$
$A_1 \not\leftrightarrows A_2$		$B_1 \not\leftrightarrows B_2$	

朱正和等: H₂O和 HLi分子的双光子激发

Table 2 Probability of single-photon and two-photon dipole excitations of H_2O				
Initial state ↔final state	Osc. strength for single-photon excitation	Osc. strength for two-photon excitation		
$A_1 \leftrightarrow A_1$	$0.101964 \sim 0.23928 \times 10^{-6}$	0.1401 \sim 0.1400 \times 10 ⁻²		
$B_1 \leftrightarrow A_1$	$0.86801 \times 10^{-1} \sim 0.10026 \times 10^{-5}$	$0.2710 \times 10^{-1} \sim 0.200 \times 10^{-3}$		
$B_2 \leftrightarrow A_1$	$0.27379 \times 10^{-1} \sim 0.18456 \times 10^{-6}$	$0.3664 \sim 0.7460 \times 10^{-1}$		

表 2 H₂O的单光子和双光子偶极激发几率

表 3 H₂O分子 DHF 的双光子激发

Table 3	Two-photon	excitations	of	DHF	for	H_2O
---------	------------	-------------	----	-----	-----	--------

IRREPS i	E/eV	Osc. strength	DIPLEN/au	IRREPS f
$1A_1$	7.9735	0.11853×10^{-5}	$E_1[z]0.2463 \times 10^{-2}$	A_1
$2A_1$	10.0536	0.23928×10^{-6}	$E_1[z]0.9856 \times 10^{-3}$	A_1
$3A_1$	11.4443	0.18847 $\times 10^{-3}$	$E_1[z]=0.2593 \times 10^{-1}$	A_1
$4 A_1$	11.6048	0.101964	$E_1[z]0.5988$	A_1
$1B_1$	7.9729	0.10026 $\times 10^{-5}$	$E_1[x]-0.2266 \times 10^{-2}$	A_1
$2B_1$	9.8883	0.10407×10^{-5}	$E_1[x]0.2073 \times 10^{-2}$	A_1
$3B_1$	10.0537	0.14919×10^{-5}	$E_1[x]-0.2461 \times 10^{-2}$	A_1
$4 B_1$	13.3398	0.86801×10^{-1}	$E_1[x]0.5153$	A_1
$1 B_2$	8.9935	0.27379×10^{-1}	$E_1[y]0.3525$	A_1
$2B_2$	9.8884	0.37783×10^{-5}	$E_1[y]-0.3949 \times 10^{-2}$	A_1
$3B_2$	10.0536	0.21282×10^{-6}	$E_1[y]-0.9295 \times 10^{-3}$	A_1
$4\mathrm{B}_2$	11.4447	0.18456 $\times 10^{-6}$	$E_1[y]-0.8113 \times 10^{-3}$	A_1
$1A_2$	7.9729	Forbidden		A_1
$2A_2$	9.8884	Forbidden		A_1
$3A_2$	10.7400	Forbidden		A_1
$4 A_2$	11.4447	Forbidden		A_1

* IRREPS i: initial state; IRREPS f: final state; E: excitation energy: DIPLEN: length component

表 4	H ₂ O分子单重态(SAC-CI法)的单光子激发
Table 4	Single-photon excitations of SAC-CI for H ₂ O

IRREPS f	$E/{ m eV}$	Tr	ansition dipole momen	t/au	Osc. strength
		x	У	z	
$^{1}A_{1}$	0.0000]	Excitations are from ¹ A	A_1	
$1 A_1$	10.7995	0.0000	0.0000	-0.5998	0.9520×10^{-1}
$2A_1$	18.0087	0.0000	0.0000	-0.5242	0.1213
$3A_1$	25.9472	0.0000	0.0000	-0.0469	0.1400×10^{-2}
$4 A_1$	29.8848	0.0000	0.0000	-0.4374	0.1401
$1 A_2$	10.2439	0.0000	0.0000	0.0000	0.0000
$2A_2$	21.7097	0.0000	0.0000	0.0000	0.0000
$3A_2$	30.5521	0.0000	0.0000	0.0000	0.0000
$4 A_2$	33.5297	0.0000	0.0000	0.0000	0.0000
$1B_1$	8.1940	-0.3673	0.0000	0.0000	0.2710×10^{-1}
$2B_1$	23.3967	-0.3527	0.0000	0.0000	0.7130×10^{-1}
$3B_1$	32.4420	0.0290	0.0000	0.0000	0.7000×10^{-3}
$4B_1$	33.2986	0.0171	0.0000	0.0000	0.2000×10^{-3}
$1B_2$	12.8935	0.0000	-0.4861	0.0000	0.7460 $\times 10^{-1}$
$2B_2$	14.9514	0.0000	-0.8940	0.0000	0.2928
$3B_2$	25.1185	0.0000	0.4888	0.0000	0.1470
$4 B_2$	31.0077	0.0000	-0.6945	0.0000	0.3664

式中 $E_j - E_i$ 为跃迁激发能,偶极线强S为

 $S = |\langle \gamma J || P^{(1)} || \gamma' J' \rangle|^2$. (7) 所以振子强度与两个态有关,同时与跃迁矩分量的 平方成比例。对 C₂v的 H₂O 分子,z 轴平分 H₂O 分 子并在分子平面中,y 轴在 H₂O 分子平面中,x 轴 与 H₂O 分子平面相垂直。根据偶极矩的向量加法, 对 C₂v的 H₂O 分子,一般来讲,x 分量最小。

关于 H₂O 分子全相对论量子力学的双光子偶 极激发的计算,基态能量为-76.080448294372630, 其激发能、振子强度、度跃迁矩分量和末态的确定如 表 3 所示。第 1~4 个初态为 A₁,其长度跃迁矩分 量为 E₁[z]即 z 分量,由表 1 可知 A₁ \leftrightarrows A₁:E₁[z], 所以末态均为 A₁。同理,第 5~8 个初态为 B₁,其 长度跃迁矩分量为 E₁[x]即 x 分量,由表 1 可知 A₁ \backsim B₁:E₁[x],所以末态均为 A₁。同理可以解说第 9 ~12 个初态。第 13~16 个初态为 A₂,因为是阻禁 的,由表 1 可知末态只能为 A₁。

为比较起见,由非相对论的 SAC-CI 法^[13],而 用相同的基集合为 cc-pVDZ,计算了 H₂O 分子的单 光子偶极激发,如表 4 所示。由于初态一律为¹A₁, 再由表 1 可知,当末态为 A₁ 时,电偶极跃迁矩为 z 分 量,是可以跃迁的;当末态为 A₂ 时,跃迁是阻禁的,所 以,振子强度为零;当末态为 B₁时,电偶极跃迁矩为 x 分量,再由表 1 可知,是可以跃迁的。同理可以说 明当末态为 B₂ 时的跃迁。 关于 H₂O 分子的双光子偶极激发和单光子偶 极激发的几率,因为两者所用的基集合相同,都为 cc-pVDZ,故有利于对比。从以下可知,一般双光子 偶极激发的跃迁几率比单光子偶极激发几率要小 $3\sim5$ 个数量级,其中 A₂ \leftrightarrow A₁均为阻禁的。

4 分子 HLi 的双光子激发

由非相对论的 SAC-CI 法^[13] 计算了 HLi 分子 的单光子偶极激发,基集合为 cc-pVDZ,计算结果如 表 5 所示。HLi 分子全相对论量子力学的双光子偶 极激发的计算结果如表 6 所示。基集合为外输的, 即 Li 的大分量为[10s6p | 10s6p],小分量为 [6s10p6d | 6s10p6d];H 的大分量为[6s | 6s],小分量 为[6p | 6p]。

以上已解说过 H₂O 分子的单光子偶极激发。 同理,可以说明对 HLi 分子的单光子偶极激发,其 初态一律为基态¹A₁。

而对 HLi 分子的双光子激发的解说,则应考虑 群 $C_{\infty v}$ 分解为群 C_{2v} 的过程。HLi 分子是 $C_{\infty v}$ 群, 计算中是用其子群 C_{2v} ,所以要给出 $C_{\infty v}$ 群的不可 约表示分解为群 C_{2v} 的不可约表示的关系,这样才 能用 C_{2v} 的计算结果还原到 $C_{\infty v}$ 群所应有的不可约 表示,即电子状态。 $C_{\infty v}$ 群分解为群 C_{2v} 的不可约表 示如表 7 所示。

表 5 HLi 分子单重态的 SAC-CI 单光子激发 Table 5 Single-photon excitations of SAC-CI for HLi

IRREPS f	$E/{ m eV}$	Tra	nsition dipole momen	t/au	Osc. strength
		X	Y	Ζ	
1 A ₁	0.000	E	xcitations are from ¹	A_1	
$1A_1$	3.4753	0.0000	0.0000	-0.9267	0.7310×10^{-1}
$2A_1$	6.4940	0.0000	0.0000	0.3488	0.1940×10^{-1}
$3A_1$	7.4635	0.0000	0.0000	0.1469	0.3900×10^{-2}
$4 A_1$	10.0065	0.0000	0.0000	-1.0893	0.2909
$1 A_2$	11.4675	0.0000	0.0000	0.0000	0.0000
$2A_2$	15.8608	0.0000	0.0000	0.0000	0.0000
$1B_1$	4.4903	1.4429	0.0000	0.0000	0.2290
$2B_1$	7.3692	0.1240	0.0000	0.0000	0.2800×10^{-2}
$3B_1$	11.8594	0.9826	0.0000	0.0000	0.2806
$4 B_1$	16.1315	0.1512	0.0000	0.0000	0.9000×10^{-2}
$1 B_2$	4.4903	0.0000	1.4429	0.0000	0.2290
$2B_2$	7.3692	0.0000	0.1240	0.0000	0.2800×10^{-2}
$3B_2$	11.8594	0.0000	0.9826	0.0000	0.2806
$4\mathrm{B}_2$	16.1315	0.0000	0.1512	0.0000	0.9000×10^{-2}

	Table 0	i wo-photon excitations of	SAC-CI IOF HLI	
IRREPS i	E /eV	Osc. strength	DIPLEN /au	IRREPS f
$1A_1(\Sigma^+)$	5.0501	0.2411	$E_1[z]1.3958$	$(A_1)\Sigma^+$
$2A_1(\Sigma^+)$	5.3857	0.1150×10^{-1}	$E_1[z] = 0.2951$	$(A_1)\Sigma^+$
$3A_1(\Sigma^+)$	5.4558	Forbidden	$E_1[z]0.1417 \times 10^{-10}$	$(3A_1 \oplus 3A_2)\Delta$
$4A_1(\Sigma^+)$	6.9221	0.3690×10^{-1}	$E_1[z]0.4665$	$(A_1)\Sigma^+$
$1 \mathrm{B}_1$	1.5184	0.1927×10^{-6}	$E_1[x] = 0.2276 \times 10^{-2}$	$(1B_1 \oplus 1B_2)\Pi$
$2B_1$	5.4120	0.4015 $\times 10^{-3}$	$E_1[x]0.5503 \times 10^{-1}$	$(2\mathbf{B}_1 \oplus 2\mathbf{B}_2)\Pi$
$3B_1$	6.2512	0.2476	$E_1[x] = 1.2716$	$(3B_1 \oplus 3B_2) \prod$
$4\mathrm{B_{1}}$	6.3538	0.3523×10^{-4}	$E_1[x]0.15045 \times 10^{-1}$	$(4B_1 \oplus 4B_2)\Pi$
$1 B_2$	1.5184	0.19276×10^{-6}	$E_1[y]0.2276 \times 10^{-2}$	$(1B_1 \oplus 1B_2)\Pi$
$2B_2$	5.4120	0.4015 $\times 10^{-3}$	$E_1[y] = 0.5503 \times 10^{-1}$	$(2B_1 \oplus 2B_2)\Pi$
$3B_2$	6.2512	0.2476	$E_1[y]1.2716$	$(3B_1 \oplus 3B_2) \prod$
$4 B_2$	6.3538	0.3523×10^{-4}	$E_1[y]0.1505 \times 10^{-1}$	$(4B_1 \oplus 4B_2) \prod$
$1A_2(\Sigma^-)$	1.5182	Forbidden		$(A_1)\Sigma^+$
$2A_2(\Sigma^-)$	5.3717	Forbidden		$(A_1)\Sigma^+$
$3A_2(\Sigma^-)$	5.4558	Forbidden		$(3A_1 \oplus 3A_2)\Delta$
$4 A_2 (\Sigma^-)$	6.3538	Forbidden		$(A_1)\Sigma^+$

表 6 HLi 分子的 DHF 双光子激发

表 7 群 C_{∞V}分解为群 C_{2V}

Table 7 Resolution of $C_{\infty V}$ into C_{2V}

$C_{^{\infty}V}$	Σ^+	Σ^{-}	$B_1 \oplus B_2$	$A_1 \oplus A_2$
C_{2V}	A_1	A_2	П,Ф	Δ····

对 HLi 分子的 DHF 双光子激发的过程可解说 如下:

1)由表 1,A₁ \subseteq A₁ 是可能的,再由表 7 有 A₁ 与 Σ⁺ 对应,即 Σ⁺ \leftrightarrow Σ⁺ 是可能的,即在表 6 中的第 1,2 和 4 行的跃迁是允许的。

2) 表 6 中第 3 和 15 行为双重简并激发,激发 能都相同,即为 5.4558 eV。这就是 $A_1 \oplus A_2$ 激发 到 Δ 态,因为 $A_1 \hookrightarrow A_2$ 不可能发生电偶极跃迁。同 时,由双原子分子的选择定则, $\Delta A = 0$, ± 1 才是允 许的;而从 Σ^+ 或 Σ^- 到 Δ 态,其 $\Delta A = 2$,所以是阻禁 的。

3) $1B_1$ 和 $1B_2$ 的激发能都为 1. 5184 eV,由表 6,其组合的双电子激发到 II 态,因为 $\Delta A = 1$,跃迁 是允许的;当然,不能到 Φ 。同理, $2B_1$ 和 $2B_2$ 的组 合, $3B_1$ 和 $3B_2$ 的组合及 $4B_1$ 和 $4B_2$ 的组合都是允 许跃迁到 II 态的。

4) 1A₂(Σ⁻),2A₂(Σ⁻)和 4A₂(Σ⁻)都不可能跃
 迁到 Σ⁺,因为 Σ⁺ ↔ Σ⁻,是阻禁的。

5 结 论

由于 H₂O 和 HLi 分子都无对称中心,所以,其双 光子激发都无宇称原则,只是遵守关于 C_{2v}的选择原 则。然而,用非相对论方法^[15]计算过 H(1s-2s)和 He(1¹s-2¹s)的双光子跃迁,这两个态的宇称相同, 这与双光子跃迁宇称原则相合,因为 H 和 He 原子 有对称中心的系统,故要遵守宇称原则。如上所述, 双光子吸收几率很小,本文计算表明双光子跃迁几 率一般比单光子跃迁的小 3~5 个数量级。 Underwood 等^[3]用 266 nm 的双光子吸收,使 H₂O 分子从 X 态跃迁至 B 态,加入其不可约表示,则应 为 $\tilde{X}^1A_1 \rightarrow \tilde{B}^1A_1$,应用的双光子能量为 7.5186 eV, 实验的激发能为 8.7868 eV。本文计算的激发能为 7.9735 eV,见表 3 第一行。计算双光子偶极激发, 要用同时包含了空间的对称性和时间反转对称性的 全相对论才会得到正确的结果。

参考文献

- 1 M. D. Wissert, B. Rudat, U. Lemmer *et al.*. Quantum dots as single-photon sources [J]. *Phys. Rev. B*, 2011, **83**(11): 113304
- 2 H. Bachau. Theory of two-photon double ionization of helium at the sequential threshold [J]. *Phys. Rev. A*, 2011, **83**(3): 033403
- 3 J. Underwood, C. Witig. Two-photon photodissociation of $\rm H_2O$ via the \tilde{B} state [J]. Chem. Phys. Lett., 2004, $386~(1\text{--}3):190{\sim}195$
- 4 Zhu Lingyun, Yi Yuanping, Shuai Zhigang. Multiphoton absorption cross sections calculated by coupled cluster equation of motion method [J]. J. Molecular Science, 2005, 21(6): 1~14 朱凌云,易院平,帅志刚. 用耦合簇运动方程计算分子的多光子 吸收截面 [J]. 分子科学学报, 2005, 21(6): 1~14
- 5 A. Kumar, S. Trotsenko, A. V. Volotka *et al.*. Measurement of the Spectral Shape for Two-Photon Decay in He-Like Tin [R]. GSI Scientific Report, 2007, 274
- 6 S. H. Lin, Y. Fujimura, H. J. Neusser *et al.*. Multiphoton Spectroscopy of Molecules [M]. New York: Academic Press, 1984.7~69

- 7 J. P. Connerade. Highly Excited Atoms[M]. Zhan Mingsheng, Wang Jin Transl. Beijing: Science Press, 2003. 323~334
 J. P. Connerade. 高激发原子[M]. 詹明生,王 谨译. 北京: 科学出版社, 2003. 323~334
- 8 T. Saue, H. J. A. Jensen. Linear response at the 4-component relativistic level: application to the frequency-dependent dipole polarizabilities of the coinage metal dimmers [J]. J. Chem. Phys., 2003, 118(2): 522~536
- 9 T. Saue, T. Helgaker. Four-component relativistic Kohn-Sham theory [J]. J. Comput. Chem., 2002, 23(8): 814~823
- 10 Zhenghe Zhu, Yongjian Tang. Spectral fine structure of the atomic ground states based on full relativistic theory [J]. Chin. Opt. Lett., 2011, 9(1): 010204
- 11 Zhu Zhenghe. Atomic and Molecular Reaction Statics [M]. Beijing: Science Press, 2007. 85~90

朱正和. 原子分子反应静力学 [M]. 北京:科学出版社, 2007.

 $85 \sim 90$

- 12 H. J. A. Jensen, T. Saue, L. Visscher. DIRAC, a Relativistic ab intio Electronic Stracture Program, Releare DIRAC 10 [CP]. 2010
- H. Nakatsuji, M. Ehara. Symmetry-adapted clusterconfiguration interaction method applied to high-spin multiplicity [J]. J. Chem. Phys., 1993, 98(9): 7179~7184
- 14 Zhu Zhenghe, Tang Yongjian. The selection rule of electronic multipole transitions derived from symmetry analysis [J]. J. Atomic and Molecular Physics, 2011, 28(5): 789~794 朱正和, 唐永建. 电多极矩跃迁选择定则的对称分析 [J]. 原子 与分子物理学报, 2011, 28(5): 789~794
- 15 Monika Bassi, K. L. Baluja. Transition probabilities for twophoton H(1s-2s) and He(1¹s-2¹s) transitions: a partial-closure approach[J]. *Pramana*, 2000, 54(3): 377~384

栏目编辑:谢 婧